Projective Modules over Witt Rings
نویسندگان
چکیده
منابع مشابه
On Projective Modules over Semi-hereditary Rings
This theorem, already known for finitely generated projective modules[l, I, Proposition 6.1], has been recently proved for arbitrary projective modules over commutative semi-hereditary rings by I. Kaplansky [2], who raised the problem of extending it to the noncommutative case. We recall two results due to Kaplansky: Any projective module (over an arbitrary ring) is a direct sum of countably ge...
متن کاملModules over Projective Schemes
Definition 1. Let S be a graded ring, set X = ProjS and letM a graded S-module. We define a sheaf of modulesM ̃ on X as follows. For each p ∈ ProjS we have the local ring S(p) and the S(p)module M(p) (GRM,Definition 4). Let Γ(U,M ̃) be the set of all functions s : U −→ ∐p∈U M(p) with s(p) ∈M(p) for each p, which are locally fractions. That is, for every p ∈ U there is an open neighborhood p ∈ V ⊆...
متن کاملAssociated Graphs of Modules Over Commutative Rings
Let $R$ be a commutative ring with identity and let $M$ be an $R$-module. In this paper we introduce a new graph associated to modules over commutative rings. We study the relationship between the algebraic properties of modules and their associated graphs. A topological characterization for the completeness of the special subgraphs is presented. Also modules whose associated graph is complete...
متن کاملSupports of Weight Modules over Witt Algebras
In this paper, as the first step towards classification of simple weight modules with finite dimensional weight spaces over Witt algebras Wn, we explicitly describe supports of such modules. We also obtain some descriptions on the support of an arbitrary simple weight module over a Z-graded Lie algebra g having a root space decomposition ⊕α∈Zngα with respect to the abelian subalgebra g0, with t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1996
ISSN: 0021-8693
DOI: 10.1006/jabr.1996.0221